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The electric dipole polarizabilities of 3H, 3He, and 4He are calculated directly using the
Schrödinger equation with the latest generation of two- and three-nucleon interactions. These polar-
izabilities are necessary in order to obtain accurate nuclear-polarization corrections for transitions
involving S-waves in one- and two-electron atoms. Our results are compared to previous results,
and it is shown that direct calculations of the electric polarizability of 4He using modern nuclear
potentials are smaller than published values calculated using experimental photoabsorption data.
The status of this topic is assessed in the context of precise measurements of transitions in one- and
two-electron atoms.

PACS numbers:

I. INTRODUCTION

Calculations of Quantum Electrodynamic (QED) cor-
rections have reached a level of precision in hydrogenic
atoms and ions where (much smaller) nuclear corrections
are necessary in order to interpret some high-precision
measurements of transition frequencies[1–3]. In many
cases the experimental errors and estimated sizes of un-
calculated QED corrections are much smaller than the
nuclear corrections, and one can thus use those measure-
ments (corrected for QED effects) as an experimental de-
termination of various nuclear quantities[4, 5]. We briefly
review several such determinations.

For S-wave hyperfine transitions in one-electron atoms
and ions[5–7], experimental precision is much greater
than that of all theoretical calculations, while uncal-
culated theoretical contributions to transition frequen-
cies (including QED corrections) are significantly smaller
than nuclear effects. The leading-order (i.e., largest) nu-
clear contribution to these hyperfine transitions (called
a Low moment[8]) is determined by a correlation be-
tween the nuclear charge and current operators[6, 7].
Low moments may be further decomposed into Zemach
moments[9] (viz., utilizing only ground-state expectation
values of the charge and current operators) and polar-
ization contributions (viz., including only virtual excited
states between the two operators), both of which play
significant roles. For the important proton (i.e., 1H)
case the polarization effects are significantly smaller than
the static (Zemach) corrections because the proton is
much more difficult to excite than any nucleus[10–12].
Although exceptionally interesting, hyperfine transitions
are not the focus of this note.

The frequencies of transitions between S-states in hy-
drogenic atoms and ions can be separated into a ref-
erence value (essentially the Dirac transition frequency

∗Present address: Department of Physics, University of Washing-
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modified by reduced-mass effects) plus the much smaller
Lamb shift. The Lamb shift contribution is dominated
by QED corrections, but nuclear effects play a significant
role in the best measured transitions. These nuclear cor-
rections can be decomposed into nuclear finite-size cor-
rections (i.e., determined by nuclear ground-state charge
distributions) plus nuclear polarization corrections (viz.,
involving virtual excited states of the nucleus). The lat-
ter are typically dominated by the electric polarizability,
which reflects the distortion of the nuclear charge dis-
tribution as it is attracted by (and follows) the orbiting
electron.

The most accurate measurement of such a frequency
was performed in Ref.[13] for the 1S-2S transition in hy-
drogen, with a relative error of slightly more than 1.4
parts in 1014 and with an absolute error of 34 Hz. That
error is slightly smaller than the estimated polarization
correction of 60(11) Hz from Ref.[14], and is much smaller
than the size correction of about 1000 kHz. The mis-
match in the sizes of these corrections again reflects the
fact that the proton is difficult to excite (compared to
a nucleus), but its size is not significantly smaller than
that of light nuclei. If one turns the problem around
and extracts the proton-size correction from the experi-
mental transition frequency, one obtains a value for the
proton r.m.s. charge radius of 〈r2〉1/2

ch = 0.877(7) fm[1],
which agrees with a recent direct determination of that
quantity from elastic electron-scattering data: 〈r2〉1/2

ch =
0.897(18) fm [15, 16]. Both the polarization-correction
and experimental errors are much smaller than the Ryd-
berg constant error, which dominates the uncertainty in
the hydrogen atom analysis.

A similar analysis[1] of transitions from the 2S state
in deuterium to a variety of S and D states leads to
a value of the deuteron charge radius of 〈r2〉1/2

ch =
2.1402(28) fm, which is consistent with the electron scat-
tering value[17, 18] of 〈r2〉1/2

ch = 2.130(10) fm. Note that
this is the full charge radius (in contrast to the quantity
discussed next), and that the atomic value has an un-
certainty nearly 4 times smaller than the value obtained
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directly from electron scattering.
The determination of the difference in transition fre-

quencies between hydrogen and deuterium can be used
to test our understanding of small contributions to the
charge radius of the deuteron[4]. Because the finite size
of the proton contributes linearly to the deuteron mean-
square radius (which determines the dominant nuclear-
size correction in an atom), it largely cancels out in
the frequency difference. Higher-order proton-size cor-
rections and neutron-size corrections are relatively small
and tractable. The transition-frequency difference (dom-
inated by calculable reduced-mass effects) was reported
in ref.[19] for 1S-2S transitions with a relative accuracy
of 2.2 parts in 1010, and with an absolute error of 0.15
kHz. The nuclear electric polarizability of deuterium con-
tributes 19.26(6) kHz [20], which is more than two orders
of magnitude greater than the experimental error, while
the deuteron-size correction is greater than 5000 kHz.
The weak binding of the deuteron makes possible the
calculation of the bulk of the polarization and nuclear-
size corrections in terms of a few well-measured param-
eters. The tiny remaining size correction includes sta-
tistically significant contributions to the nuclear charge
radius arising from meson-exchange currents and rela-
tivistic corrections[4, 21], which are unobtainable from
other types of experiments such as electron scattering.
Obtaining this sensitivity to fine details of nuclear dy-
namics crucially depends on accurate estimates of the
deuteron electric polarizability.

Measurements of S-wave transition frequencies in 3H,
3He, and 4He atoms are not yet as accurate as those de-
scribed above, nor are the necessary theoretical calcula-
tions for He atoms. Hopefully both can be improved[22]
to the point where nuclear physics information can be ex-
tracted, particularly information about the r.m.s. charge
radii. As reviewed and updated in Ref. [23], on the other
hand, isotopic differences in transition frequencies for he-
lium and singly ionized lithium isotopes now have the
required experimental and theoretical sensitivity. The
latter sensitivity is greatly enhanced by the cancellation
of nuclear-mass-independent relativistic and QED cor-
rections in isotopic differences. In complete analogy to
the hydrogen-deuterium case, calculable reduced-mass ef-
fects dominate the frequency difference, leaving nuclear
contributions as the residue after relativistic and QED
contributions are subtracted. There has been consider-
able recent interest in the isotope shift of 3He[24, 25],
6He[26–28], and 8He[28] transitions relative to those of
4He. In each case values of the r.m.s. charge radius of
those nuclei has been extracted relative to the charge
radius of 4He[29, 30]. The nuclear polarizability correc-
tion to the 3He - 4He isotope-shift frequency (the best
measured of the He isotope shifts) is about 2/3 of the
3 kHz experimental uncertainty[23–25], while presently
only a marginal influence[23] on the others, but future
improvements should require reliable values of the elec-
tric polarizability (as was the case for the deuteron), and
that is the purpose of this note.

II. CALCULATIONS

The electric polarizability of a nucleus (or atom) is
defined by

αE = 2α
∑

N "=0

|〈N |Dz|0〉|2

EN − E0
, (1)

where E0 is the energy of the ground-state |0〉, EN is the
energy of the Nth excited state, |N〉 (all of which are in
the continuum for few-nucleon systems), and Dz is the
component of the (non-relativistic, in our case) electric-
dipole operator in the ẑ direction, which generates the
transition between those states. The definition (1) can
be rearranged into the form of a sum rule

αE =
1

2π2

∫ ∞

ωth

dω
σud

γ (ω)
ω2

≡ σ−2

2π2
, (2)

where σud
γ (ω) is the nuclear cross section for photoabsorp-

tion of unretarded-dipole (long-wavelength) photons with
energy ω, and ωth is the threshold energy for photoab-
sorption. The inverse-energy weightings in Eqns. (1) and
(2) lead to significant sensitivity of αE to the threshold
energy, ωth, which depends on nuclear binding energies.

In order to obtain the nuclear energy spectra and the
wave functions involved in the calculation of the elec-
tric polarizability (see Eqn. (1)), we use the no-core
shell model (NCSM) in relative coordinates [31] to solve
the Schrödinger equation. The NCSM is a flexible ap-
proach to solving the few- and many-nucleon problems,
and it has been extensively used in studies of s- and p-
shell nuclei [32–36]. In the NCSM the nuclear wave func-
tions are obtained by the diagonalization of an effective
Hamiltonian in a finite basis constructed from harmonic
oscillator (HO) wave functions. The truncation of the
model space is taken into account via an effective in-
teraction derived by means of a unitary transformation.
Either local or non-local high-precision nucleon-nucleon
(NN) and three-nucleon (NNN) interactions can be used
in the Schrödinger equation. The effective interaction is
constructed in a cluster approximation, which neglects
many-body contributions. Errors associated with the
cluster approximation are removed by observing the con-
vergence of observables as a function of the number of
basis states included in the calculation. The truncation
of the model space is determined and labeled by the num-
ber of excitations, Nmax, above the non-interacting state.
Our convergence tests will plot calculated quantities vs.
Nmax, and those quantities should approach asymptotic
values as Nmax becomes infinite.

In this paper we compute the 3H, 3He and 4He electric
dipole polarizabilities starting from a nuclear Hamilto-
nian derived within the framework of (QCD-based) Chi-
ral Perturbation Theory (including the Coulomb inter-
action between the protons). The nucleon-nucleon inter-
actions were derived at next-to-next-to-next-to-leading
order (or N3LO) [37], while the three-nucleon interac-
tions were derived at next-to-next-to-leading order (or
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N2LO) [38, 39]. The accuracy of these nuclear interac-
tions for s- and p-shell nuclei was investigated extensively
in the same NCSM framework in Ref. [34]. It was shown
in Ref. [35] that the experimental binding energies of 3H
and 3He were reproduced with high accuracy (viz., within
8 keV, or about one part per thousand), while Ref. [36]
showed that the same nuclear potential produced a bind-
ing energy for 4He that was too large by about 300 keV
(approximately 1%). These modern nuclear forces there-
fore provide an accurate description of the structure of
the nuclides considered here (3H, 3He, and 4He) as well as
the total photoabsorption cross section of 4He (discussed
below).

For each nucleus we first solve the few-nucleon
Schrödinger equation in order to obtain the ground-state
wave function, which can be accurately described in a
large HO basis. We next rearrange Eqn. 1 according to
Podolsky’s technique[40], which allows the ground state
to be used as the driving term for the Lanczos-moment
method [41, 42], which is our method of choice for solving
the Schrödinger equation. This trick allows us to work
only with bound-state quantities and to bypass the much
more difficult approach of computing a response in the
continuum. A detailed description of this method in a
NCSM framework was given in Ref. [43].

Finally, we note that the same technique used to obtain
the effective nuclear interaction should in principle be
applied to the transition operator. Nevertheless, investi-
gations of effective operators in the NCSM have shown
that long-range operators (such as our dipole operator)
require only very weak renormalization[44, 45] and for
that reason we can work with the unrenormalized dipole
operator.

III. RESULTS AND COMPARISON WITH
OTHER WORK

In Figs. 1–3, we show the running of the electric po-
larizability with the truncation parameter for the model
space, Nmax. Different HO parameters result in different
convergence patterns for the electric polarizability and
this fact is especially visible for small Nmax values. As
shown in Figs. 1–3, results using smaller HO frequencies
ω converge faster. Thus, because smaller values for Ω
are equivalent with larger associated length parameters,
b = 1/

√
mNΩ, long range operators, such as the dipole

transition operator, are better described in smaller model
spaces. Moreover, better sampling of the low-lying ex-
cited states (the most important in the calculation of the
electric polarizability) is obtained for small values of Ω.
While not shown, other operators converge faster at small
HO frequencies. In particular for binding energies, the
fastest convergence is achieved for a HO length parameter
b of the order of the size of the nucleus considered. How-
ever, for large Nmax, the results obtained with different
frequencies of the HO basis approach a single asymptotic
value, independent on the observable considered.

8 12 16 20 24 28 32 36 40 44
Nmax

0.05

0.10

0.15

α
E [f

m
3 ]

10
20
30
40

8 12 16 20 24 28 32
Nmax

0.05

0.10

0.15

α
E[fm

3 ]

3H

NN

NN+NNN

3H
(a)

(b)

FIG. 1: [Color online] The dependence of (the electric po-
larizability) αE of 3H (in units of fm3) on the model-space
truncation parameter, Nmax. The results have been obtained
using (a) NN interactions only, and (b) NN+NNN interac-
tions. Each curve is obtained using a different frequency pa-
rameter for the basis states, shown in the legend in MeV. For
sufficiently large Nmax each result should be independent of
that frequency.

We present in the the upper panels of Figs. 1–3 results
obtained neglecting three-body interactions, while results
that include three-body forces are shown in the lower
panels. Note, however, that because the binding energy
is not correctly described in the absence of three-nucleon
interactions, the values obtained with only NN interac-
tions are about 10–25% larger than the results obtained
when NNN interactions are included. This is largely the
effect of having an incorrect value for ωth.

Our calculations of the electric polarizabilities of three-
and four-nucleon isotopes of hydrogen and helium are
summarized in Table I, together with those of others us-
ing different two-nucleon and three-nucleon forces. We
have restricted our own entries to those that incorpo-
rate three-nucleon forces and hence have accurate bind-
ing energies, especially for the three-nucleon systems and
slightly less so for 4He. The three-body parameters can
be determined from different three-body data, and, while
in the three-body system there is basically no change in
the results, the binding energy of 4He is slightly better
described in one case. Consequently, the electric polariz-
ability changes and this is why we present two values for
the α particles; see below for more details. In the case
of 4He, the two different values for the electric polariz-
ability are obtained with two different strengths of the
three-body forces. For completeness in the table we have
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FIG. 2: [Color online] Same as in Fig. 1, but for 3He.
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FIG. 3: [Color online] Same as in Fig. 1, but for 4He.

also included the deuterium and 6He cases, which were
not treated in this work.

Only one other calculation of αE for 3H exists[46], and
our result is in agreement with that calculation.

Calculations for the electric polarizability of 3He [47,
48] are in agreement within their uncertainties, and are in
reasonable agreement with the determination of Ref. [49],

but not with Ref. [50]. We note that if charge symmetry
were exact in the three-nucleon systems, the Hamiltoni-
ans and polarizabilities of 3H and 3He would be identical.
Under the charge-symmetry operation that relates the
two nuclei the dipole operators in Eqn. (1) would each
develop a minus sign, while the radial wave functions and
Green’s functions would be identical. Most of the charge-
symmetry violation in these systems is caused by the re-
pulsive Coulomb interaction between the two protons in
3He. Note that our uncertainties for these two nuclei are
also different. The repulsive Coulomb interaction in 3He
leads to a larger radius for that nucleus, and that may
be the source of the larger uncertainty. Matrix elements
of infrared operators (i.e., those like the dipole operator
that are most sensitive to large distances from the center
of a nucleus) converge more slowly in the NCSM than do
short-range operators[44, 45].

The uncertainties are even smaller for the calculation
in 4He, which is a very tightly bound system. Our re-
sults presented in Table I are significantly smaller than
most of the corresponding results, although just at the
limit of the estimated uncertainties. We are, however,
in good agreement with a recent calculation by Gazit et
al.[51], which predicts a slightly smaller polarizability.
Note that Ref. [47] used a very primitive nuclear force
model and that those results are superseded by those of
Ref.[51]. References [52] and [48] used fits to experimen-
tal photoabsorption data and Eqn. 2 in order to obtain
their results. Values obtained from a direct solution of
the Schrödinger equation are therefore at some variance
with those calculated using experimental photoabsorp-
tion data.

Measurements of α-particle photoabsorption in the
near-threshold region have been controversial over the
years, particularly with respect to the height of the cross
section at the peak, for which one can find differences
of up to a factor of two between different experiments
(e.g., see Ref. [36] and references therein). This makes it
very challenging to extract an accurate and unambiguous
value of the 4He electric polarizability from the measured
4He photoabsorption cross section using Eqn. (2). In con-
trast there has been substantial recent progress in theo-
retical calculations of the 4He photoabsorption cross sec-
tion. Predictions obtained using high precision NN and
NNN interaction models (including the ones used in this
work) all lie in a rather constrained band[36], in remark-
able contrast to the large discrepancies present among
different experimental data. This gives us confidence that
our prediction for the 4He electric polarizability, obtained
by direct solution of the Schrödinger equation, will prove
to be more accurate than those obtained using existing
photoabsorption data.

Since our result of 0.0660(5) fm3 is obtained with an
NNN interaction that overbinds the alpha particle by
about 300 keV, it is conceivable that we slightly under-
estimate αE. The simplest possible independent-nucleon
model for the α-particle predicts that αE should scale
roughly as the inverse square of the binding energy. Thus,
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TABLE I: Values of the electric polarizability of light nuclei,
both theoretical and experimental, in units of fm3. The ex-
perimental results have been determined by nuclear exper-
iments, including the use of experimental photoabsorption
data in Eqn. (2). No uncertainties were given for the 3H,
3He, and 4He calculations in [46, 47], but they are likely to
be smaller than about 10%. The 6He result is a hybrid cal-
culation relying on some theoretical input and we add it here
for completeness. Results from the present calculation have
no listed reference. The result of Ref. [53] for the deuteron is
an Effective Field Theory calculation.

Nucleus αcalc
E (fm3) ref. αexp

E (fm3) ref.

2H 0.6328(17) [20] 0.61(4) [54]

0.6314(19) [53] 0.70(5) [55]
3H 0.139(2) −

0.139 [46]
3He 0.149(5) 0.250(40) [50]

0.145 [47] 0.130(13) [49]

0.153(15) [48]
4He 0.0660(5) 0.072(4) [52]

0.0673(5) 0.076(8) [48]

0.0655(4) [51]

0.076 [47]
6He 1.99(40) [48]

even our calculations that neglect three-nucleon forces in
the alpha particle result in a value of αE = 0.0822(5) fm3

(25% higher than our best result that incorporates these
forces), while reducing the binding energy from 28.6 to
25.4 MeV (an 11% decrease). A similar effect is also seen
in the 3He and 3H calculations, where our three-nucleon
forces had been adjusted so that calculated binding ener-
gies differ from experiment by no more than one part per
thousand. We have even considered another model, in
which the three-body system is described with the same
accuracy, but in which the alpha particle is overbound by
only about 200 KeV, and in this case we obtain 0.0673(5)
fm3. This would not explain the large differences (al-

though with large uncertainties) in Table I between di-
rect calculations of αE from the Schrödinger equation
and those using photoabsorption data and Eqn. (2). We
estimate that improving further the description of the
binding energy of 4He would not affect the electric po-
larizability by more than 2%, so that we recomend the
value of 0.0677(8) fm3.

IV. CONCLUSION

We have used the latest generation NN and NNN in-
teractions in a NCSM framework in order to obtain accu-
rate three- and four-nucleon solutions of the Schrödinger
equation. Using the Lanczos-moment method to imple-
ment Podolsky’s technique[40] for treating second-order
perturbation theory, we have calculated the electric po-
larizabilities of 3H, 3He, and 4He. Our result for 3H
is in excellent agreement with that of Ref. [46], while
that for 3He is in good agreement with previous work.
Our recommended value of 0.0677(8) fm3 for 4He is at
the lowest end of the calculations that used experimen-
tal photoabsorption data directly in Eqn. (2), and is in
reasonable agreement with a more recent calculation us-
ing modern phenomenological potentials. Future calcu-
lations for other light nuclei such as 6He and 6Li should
be tractable, but would require a change of basis for the
NCSM. For nuclei with mass numbers greater than five,
a Slater Determinant basis is much more efficient than
the relative coordinate approach used in this work.
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Lett. 80, 468 (1998).

[20] J. L. Friar and G. L. Payne, Phys. Rev. C 55, 2764
(1997).

[21] J. L. Friar, Can. J. Phys. 80, 1337 (2002).
[22] E. E. Eyler, D. E. Chieda, M. C. Stowe, M. J. Thorpe,

T. R. Schibli, and J. Ye, Eur. Phys. J. D 48, 43 (2008).
[23] G. W. F. Drake, W. Nörtershäuser, and Z.-C. Yan, Can.
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